Categories: Technology

New Study Reveals the Brain Stores Multiple Copies of Every Memory

New research indicates that the brain stores at least three distinct copies of every memory, overturning the long-held belief that a single, modifiable version exists. Conducted on rodents, the study focused on the hippocampus, a critical brain region for memory and learning. Researchers discovered that neurons in this area create multiple memory copies, each varying in strength and stability, which could explain why and how memories change over time.

These memory copies are encoded by different types of neurons, each with unique characteristics. Early-born neurons are the first to create a long-term memory copy. Initially weak, this copy becomes stronger as time passes. Following this, middle-ground neurons form a more stable version from the outset. Lastly, late-born neurons encode a memory that starts strong but fades more rapidly than the others. This process suggests that the brain has a built-in mechanism for managing the evolution of memories as we age and continue to learn.

How Memories Are Encoded

The study highlights the complexity of memory formation within the hippocampus. Early-born neurons are responsible for the long-term retention of memories, forming a foundational copy that is critical for enduring recollection. Middle-ground neurons ensure the memory’s stability, while late-born neurons, although strong at first, contribute to the more malleable aspects of memory that might be reshaped by new experiences or information.

The findings carry significant implications for understanding and treating memory-related disorders. For instance, in conditions like PTSD, where memories can be distressing and intrusive, therapies could target the late-born neurons to diminish the emotional impact of traumatic memories. Conversely, for those suffering from dementia, stimulating early-born neurons might help enhance memory retention, potentially slowing the progression of memory loss.

Future Possibilities

Understanding how different neuron groups contribute to memory storage opens new avenues for potential therapies. By selectively targeting the type of neuron involved in encoding a memory, researchers may eventually develop treatments that can either strengthen memory retention or enable the rewriting of painful memories.

This study not only reshapes our understanding of memory but also lays the groundwork for future treatments that could revolutionize the management of memory-related conditions.

News Today

Recent Posts

Kareena Kapoor’s Next Untitled Film With Meghna Gulzar Gets Prithviraj Sukumaran On Board

Kareena Kapoor is working with Raazi director Meghna Gulzar for her next film. The project,…

2 weeks ago

Purdue basketball freshman Daniel Jacobsen injured vs Northern Kentucky

2024-11-09 15:00:03 WEST LAFAYETTE -- Daniel Jacobsen's second game in Purdue basketball's starting lineup lasted…

2 weeks ago

Rashida Jones honors dad Quincy Jones with heartfelt tribute: ‘He was love’

2024-11-09 14:50:03 Rashida Jones is remembering her late father, famed music producer Quincy Jones, in…

2 weeks ago

Nosferatu Screening at Apollo Theatre Shows Student Interest in Experimental Cinema – The Oberlin Review

2024-11-09 14:40:03 A silent German expressionist film about vampires accompanied by Radiohead’s music — what…

2 weeks ago

What Are Adaptogens? Find Out How These 3 Herbs May Help You Tackle Stress Head-On

Let's face it - life can be downright stressful! With everything moving at breakneck speed,…

2 weeks ago

The new Mac Mini takes a small step towards upgradeable storage

Apple’s redesigned Mac Mini M4 has ditched the previous M2 machine’s SSD that was soldered…

2 weeks ago